NEW INTERMEDIATES, DEGRADATION OF VALIDAMYCIN A BY *FLAVOBACTERIUM SACCHAROPHILUM*

Sir:

Validamycin A possesses unique structural features (Fig. 1) and interesting biological activities. It is effective against sheath blight of rice plants and some soil-borne diseases, in spite of having no antibiotic activity *in vitro*. We are interested in the degradation of validamycin A by soil bacteria from rice fields. In the preceding paper¹⁾, we reported on cyclitols, 1-*epi*- and 1,3-*epi*-validatol, and aminocyclitols, validamine and valienamine, as intermediates of the microbial degradation of validamycin A in growing cultures of *Flavobacterium saccharophilum*. In order to study the degradation processes in more detail, we carried out the bioconversion with resting cells of *F. saccharophilum*.

In this communication, we report the isolation and structure elucidation of three additional intermediates and discuss the relationship between the intermediates and the degradation processes.

F. saccharophilum was cultured in nutrient broth with shaking at 27° C for 24 hours. The

cells were harvested by centrifugation at $20,000 \times$ g. The washed cells (50 g, wet weight) were suspended in 1,000 ml of 0.05 M phosphate buffer, pH 7.0, containing 10 g of validamycin A, and the suspension was incubated at 27°C for 48 hours under shaking conditions. The cells were centrifuged and the supernatant passed through columns of Amberlite IR-120 (H+ form, 200 ml) and IR-45 (OH⁻ form, 300 ml). The concentrate of the neutral fraction was chromatographed on a silica gel column with the solvent system CHCl₃ - MeOH (10: 1) and separated into fractions A and B. Further chromatography of fraction B with columns of Dowex $1-\times 2$ (OH⁻ form) and active carbon gave the homogeneous compound III (15 mg), in addition to 1-epi- and 1,3epi-validatol reported previously. Fraction A was chromatographed on a column of silica gel with the solvent system $EtOAc - CHCl_{3}$ (10:1) and rechromatographed on a column of Dowex $1-\times 2$ (CH₃COO⁻ form) to give homogeneous compounds IV (130 mg) and V (48 mg).

Compound III: colorless oil, $[\alpha]_D^{25}+20.6^\circ$ (*c* 1, H₂O). The ¹³C NMR spectrum (in D₂O) of compound III showed the presence of three methylenes and four methines.

Compound III forms a tetraacetate, colorless

Fig. 1. Microbial degradation of validamycin A by Flavobacterium saccharophilum.

Fig. 2. ¹H NMR spectrum of compound IV (100 MHz in D₂O).

Fig. 3. ¹H NMR spectrum of compound V (100 MHz in D₂O).

oil, $C_{15}H_{22}O_8$ (mass spec.: $M^+ m/z$ 330). The ¹H NMR spectrum (in C_8D_8) of compound III tetraacetate showed a pair of quartets centered at δ 3.94 and δ 4.04 of two side-chain methylene protons (-CH₂O-Ac, H-7, *J*=11.1 Hz), which are coupled with the H-4 proton (δ 2.04, $J_{4,7a}$ =3.4Hz, $J_{4,7b}$ =5.1 Hz) on the tertiary ring carbon atom. The splitting pattern of the H-3 proton (δ 5.30, $J_{2,8}$ =3.1 Hz, $J_{3,4}$ =10.3 Hz) is typical of an axial proton with vicinal axial and equatorial protons, clearly suggesting the axial conformation of the H-4 proton. The splittings of the H-1 proton (δ 5.10, $J_{1,2}$ =4.3 Hz, $J_{1,6a}$ =3.4 Hz, $J_{1,6b}$ =3.4 Hz) indicate the equatorial conformation for the H-1 proton.

These data established the structure of compound III as (1L)-1,4/2,3-4-hydroxymethylcyclohexanetriol, namely, 1,3,4-epi-validatol.

* The numbering system for validatol

Compound IV: colorless amorphous, m.p. $112 \sim 116^{\circ}$ C, $[\alpha]_{D}^{25} + 25.7^{\circ}$ (c 1, H₂O), calcd. for C₇H₁₂O₄: C 52.49, H 7.55, found: C 53.21, H 7.64. The infrared spectrum taken in KBr disk showed the presence of a carbonyl function (1720 cm⁻¹). The ¹⁸C NMR spectrum (in D₂O) of compound IV showed the presence of three methylenes, three methines and a singlet at δ 214.7 (ppm from DSS) suggestive of a carbonyl group. The ¹H NMR spectrum (in D_2O) is shown in Fig. 2. In the splitting patterns of H-2 and H-6, the effect of long-range coupling was observed. The splitting pattern of the H-6 proton $(J_{\text{seq,}\theta}=6.6 \text{ Hz}, J_{\text{sax,}\theta}=11.4 \text{ Hz})$ indicates axial conformation for the H-6 proton. The H-2 proton appears as a doublet peak with a large coupling constant ($J_{2,3}$ =10.5 Hz) and suggests transaxial protons H-2 and H-3.

These data established the structure of compound IV as (2D)-2,6/3-3-hydroxymethyl-2,6dihydroxycyclohexanone, namely, 3-keto-1-*epi*validatol.

Compound V: colorless amorphous, m.p. $85 \sim 88^{\circ}$ C, $[\alpha]_{D}^{25}+6.5^{\circ}$ (*c* 1, H₂O), calcd. for C₇H₁₂O₄: C 52.49, H 7.55, found: C 52.40, H 7.53. The infrared spectrum (in KBr disk) showed the presence of a carbonyl function (1720 cm⁻¹). The ¹³C NMR spectrum (in D₂O) showed the presence of three methylenes, three methines and a carbonyl group at δ 214.2. The splitting patterns of H-2 and H-3 protons ($J_{2,3}$ =9.7 Hz, $J_{3,4}$ =9.7 Hz) in the ¹H NMR spectrum (Fig. 3) suggest all *trans*-axial protons H-2, H-3 and H-4.

These data established the structure of compound V as (2L)-2,4/3-4-hydroxymethyl-2,3-di-hydroxycyclohexanone, namely, 4-keto-1-*epi*-validatol.

In experiments on the microbial conversion

using resting cells of *F. saccharophilum*, we found that each of the five neutral intermediates obtained so far was derived from validamine. In the case of the conversion of 1-*epi*-validatol as a substrate, as shown in Fig. 5, it was found that two keto-cyclitols and other cyclitols were formed from 1-*epi*-validatol.

Epimerization at C-4 position of hexoses is well-known. Since it had been found that the reaction at C-4 required the presence of catalytic amounts of NAD⁺, it was assumed that the epimerization proceeded through a 4-ketose intermediate^{2,3)}. However, the formation of such an intermediate has not been demonstrated conclusively. Evidence has been accumulating that *syllo*-inositol is formed from *myo*-inositol by an epimerization reaction thought to proceed through a keto compound, *myo*-inosose- $2^{4-6^{\circ}}$.

Fig. 5. Bioconversion of 1-epi-validatol by resting cells of *Flavobacterium saccharophilum*.

We could also demonstrate that 3-keto-1-*epi*-validatol was reduced stereospecifically by resting cells of *F. saccharophilum* to give 1,3-*epi*-validatol. Though the role of 4-keto-1-*epi*-validatol is not clear, it may be the intermediate of the epimer with the mannose-type configuration, which has not been isolated so far.

Further investigations are undertaken to elucidate the process of formation of 1,3,4-*epi*-validatol, and to isolate the enzymes catalyzing the individual steps of the degradation.

> Yukihiko Kameda Naoki Asano Masanori Teranishi Michiyo Yoshikawa Katsuhiko Matsui

School of Pharmacy, University of Hokuriku, Kanazawa, Japan

(Received June 15, 1981)

References

- KAMEDA, Y.; N. ASANO, M. TERANISHI & K. MATSUI: New cyclitols, degradation of validamycin A by *Flavobacterium saccharophilum*. J. Antibiotics 33: 1573~1574, 1980
- MAXWELL, E. S. & H. DE ROBICHON-SZULMA-JSTER: Purification of uridine diphosphate galactose-4-epimerase from yeast, and the identification of protein-bound diphosphopyridine nucleotide. J. Biol. Chem. 235: 308~312, 1960
- WILSON, D. B. & D. S. HOGNESS: The enzymes of the galactose operon in *Escherichia coli*. I. Purification and characterization of uridine diphosphogalactose 4-epimerase. J. Biol. Chem. 239: 2469~2481, 1964
- CANDY, D. J.: Occurrence and metabolism of syllo-inositol in the locust. Biochem. J. 103: 666~671, 1967
- HORNER, W. H. & I. H. THAKER: The metabolism of syllo-inositol in *Streptomyces griseus*. Biochim. Biophys. Acta 165: 306~308, 1968
- 6) HIPPS, P. P.; R. K. SEHGAL, W. H. HOLLAND & W. R. SHERMAN: Identification and partial characterization of inositol: NAD⁺ epimerase and inosose: NAD(P)H reductase from the fat body of the American cockroach, *Periplaneta americana* L. Biochemistry 12: 4705 ~ 4712, 1973